Train Energy’s
Effect on

Track buckling behavior, its causes and its preven-
tion, have been the subjects of ongoing research for
many years. Earlier research (RT&S, Feb. 1988, p. 12
and March 1988, p. 12) has addressed the concept of a
“safe buckling temperature increase,” which attempted to
define an allowable temperature increase (above the
rail’s neutral, or “force-free,” temperature) below which
the track would be safe from buckling. More recent
research has worked to refine this approach by attempt-
ing to more accurately define these allowable tempera-
ture-increase limits as a function of track conditions and
external energy inputs.

One such research program, being carried out by the
Department of Transportation’s Transportation System
Center, has, through a series of theoretical and experi-
mental efforts, attempted to more accurately define these
allowable temperature increase limits from a track buck-
ling safety point of view (1). Noting the relationship
between temperature increase (above neutral) and lateral
movement of the track illustrated in Figure 1, if the
temperature increase is greater than the lower limit
(", = "s. ) then the input of an energy disturbance, such
as caused by a passing train, can cause the track to move
laterally and buckle. The amount of energy required
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varies as a function of several key track parameters,
which include track lateral resistance, curvature, pres-
ence of lateral imperfections, or defects, and the tem-
perature increase itself,

Field tests

The relationship between temperature increase and
required buckling energy for a five-degree curve with a
defined resistance and defect condition is illustrated in
Figure 2. In accordance with the theory, the buckling
energy decreases as the temperature increase approaches
the upper buckling limit (% ,...), where it becomes zero.
At this upper limit, the track will buckle even without the
presence of an additional energy .disturbance. At the
lower limit ("; ....), the required energy input was the
greatest. (Below this lower limit, the track will not
buckle at all, because the only “equilibrium” configura-
tion for the track is that of the straight track (Figure 1).

This behavior was further confirmed by a series of
ficld tests where the temperature was increased (under a
controlled environment) and a test train run over the test
track in order to input the external energy disturbance.
The results of these tests, one of which is presented in
Figure 3, showed good agreement with the theoretical
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Figure | —Theoretical relationship between temperatire increase
and lateral track movement (2).

Figure 2— Energy required to cause buckling in a five-degree
curve {1}
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